Classification of C*-algebras of minimal diffeomorphisms on odd dimensional spheres

Karen R. Strung

Institute of Mathematics Polish Academy of Sciences (Warsaw)

West Coast Operator Algebra Seminar Denver, November 2014

< ロ > < 同 > < E > < E > E < の < 0</p>

Introduction

Let X be an infinite compact Hausdorff space and $\alpha: X \to X$ a homeomorphism.

Then α induces an action of \mathbb{Z} on the C*-algebra C(X):

$$n.f \longmapsto f \circ \alpha^{-n}.$$

What can we say about the crossed product C*-algebra?

$$C(X) \rtimes_{\alpha} \mathbb{Z}$$
 "= " $C^*(C(X), u),$

where u is a unitary implementing the action, i.e,

$$ufu^* = f \circ \alpha^{-1}.$$

< ロ > < 同 > < E > < E > E < の < 0</p>

Let (X, α) be a topological dynamical system. Then C(X) ⋊_α ℤ is nuclear.

・ロト・日本・モト・モート ヨー うへぐ

Let (X, α) be a topological dynamical system. Then

- $C(X) \rtimes_{\alpha} \mathbb{Z}$ is nuclear.
- Tracial states are in one-to-one correspondence with invariant Borel probability measures.

Let (X, α) be a topological dynamical system. Then

- $C(X) \rtimes_{\alpha} \mathbb{Z}$ is nuclear.
- Tracial states are in one-to-one correspondence with invariant Borel probability measures.

< ロ > < 同 > < E > < E > E < の < 0</p>

• When X is metrisable, $C(X) \rtimes_{\alpha} \mathbb{Z}$ is separable.

Let (X, α) be a topological dynamical system. Then

- $C(X) \rtimes_{\alpha} \mathbb{Z}$ is nuclear.
- Tracial states are in one-to-one correspondence with invariant Borel probability measures.
- When X is metrisable, $C(X) \rtimes_{\alpha} \mathbb{Z}$ is separable.
- (X, α) is a minimal dynamical system (ie. there are no proper closed α-invariant subsets of X) if and only if C(X) ⋊_α Z is simple.

< ロ > < 同 > < E > < E > E < の < 0</p>

To every (simple separable unital nuclear) C^* -algebra A, one may assign the Elliott invariant,

$$\begin{aligned} \mathsf{EII}(A) &= (K_0(A), K_0(A)_+, [1_A]_+, K_1(A), \\ &\quad T(A), \rho : T(A) \to SK_0(A)). \end{aligned}$$

・ロト・日本・モート モー うへぐ

To every (simple separable unital nuclear) C^* -algebra A, one may assign the Elliott invariant,

$$\begin{aligned} \mathsf{EII}(A) &= (\mathcal{K}_0(A), \mathcal{K}_0(A)_+, [1_A]_+, \mathcal{K}_1(A), \\ &\quad \mathcal{T}(A), \rho : \mathcal{T}(A) \to \mathcal{SK}_0(A)). \end{aligned}$$

Given a class C of simple separable unital nuclear C*-algebras, we want to show that if $A, B \in C$ then

$$\mathsf{EII}(A) \cong \mathsf{EII}(B) \iff A \cong B.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Example: Cantor minimal systems

Let $C_0 = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ Cantor minimal system}\}.$

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)、(O)

Let $C_0 = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ Cantor minimal system}\}.$ [Giordano, Putnam, Skau] For $A, B \in C_0$

 $A \cong B \iff \operatorname{Ell}(A) \cong \operatorname{Ell}(B),$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $C_0 = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ Cantor minimal system}\}.$ [Giordano, Putnam, Skau] For $A, B \in C_0$

$$A \cong B \iff \operatorname{Ell}(A) \cong \operatorname{Ell}(B),$$

and in fact

 \iff (X_A, α_A) and (X_B, α_B) strong topological orbit equivalent.

< ロ > < 同 > < E > < E > E < の < 0</p>

What if $\dim X > 0$?

What if $\dim X > 0$?

We can say some things:

What if $\dim X > 0$?

We can say some things:

Theorem Let $C_D = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ is uniquely ergodic} \}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

What if $\dim X > 0$?

We can say some things:

Theorem

Let $C_D = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ is uniquely ergodic}\}$. Then for $A, B \in C_D$ we have $A \cong B \iff \text{Ell}(A) \cong \text{Ell}(B)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

What if $\dim X > 0$?

We can say some things:

Theorem

Let $C_D = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ is uniquely ergodic}\}$. Then for $A, B \in C_D$ we have $A \cong B \iff \text{Ell}(A) \cong \text{Ell}(B)$.

(In fact, we can do a bit better: We only need that the projections separate traces in the $\rm C^*\mathchar`-algebra.)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

What if $\dim X > 0$?

We can say some things:

Theorem

Let $C_D = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ is uniquely ergodic}\}$. Then for $A, B \in C_D$ we have $A \cong B \iff \text{Ell}(A) \cong \text{Ell}(B)$.

(In fact, we can do a bit better: We only need that the projections separate traces in the $\rm C^*\mathchar`-algebra.)$

< ロ > < 同 > < E > < E > E < の < 0</p>

Does *-isomorphism \implies something about dynamical systems?

What if $\dim X > 0$?

We can say some things:

Theorem

Let $C_D = \{C(X) \rtimes_{\alpha} \mathbb{Z} \mid (X, \alpha) \text{ is uniquely ergodic}\}$. Then for $A, B \in C_D$ we have $A \cong B \iff \text{Ell}(A) \cong \text{Ell}(B)$.

(In fact, we can do a bit better: We only need that the projections separate traces in the $\rm C^*\mathchar`-algebra.)$

Does *-isomorphism \implies something about dynamical systems?

Example [Fathi-Herman]: Let $m \neq n \geq 3$, odd. Then there are uniquely ergodic minimal dynamical systems $(S^m, \beta_1), (S^n, \beta_2)$ such that $C(S^m) \rtimes_{\beta_1} \mathbb{Z} \cong C(S^n) \rtimes_{\beta_2} \mathbb{Z}$.

Minimal diffeomorphisms of odd dimensional spheres

Let $n = 2k + 1, k \ge 1$.

There are minimal diffeomorphisms β of S^n having any predefined number of β -invariant measures [Windsor, 2003].

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

In particular there exist nonuniquely ergodic minimal dynamical systems.

Definition

Let Y be infinite, compact, metrisable and $\beta: Y \to Y$ a homeomorphism. Say that β is a fast approximation by periodic homeomorphisms if $\beta: Y \to Y$ that can be written as the limit of a sequence $(T_i)_{i\in\mathbb{N}}$ of homeomorphisms such that $T_i: Y \to Y$ has period m_i , each m_i divides m_{i+1} , and

$$\sup_{\substack{t\in Y\\j=1,...,m_i}} |\beta^j(t)-T^j_i(t)|\to 0 \text{ as } i\to\infty.$$

Definition

Let Y be infinite, compact, metrisable and $\beta: Y \to Y$ a homeomorphism. Say that β is a fast approximation by periodic homeomorphisms if $\beta: Y \to Y$ that can be written as the limit of a sequence $(T_i)_{i\in\mathbb{N}}$ of homeomorphisms such that $T_i: Y \to Y$ has period m_i , each m_i divides m_{i+1} , and

$$\sup_{\substack{t\in \mathbf{Y}\\j=1,\ldots,m_i}}|eta^j(t)-\mathcal{T}^j_i(t)|
ightarrow 0$$
 as $i
ightarrow\infty.$

Windsor's diffeomorphisms above are all fast approximations by periodic homeomorphisms.

Let (S^n, β) be a minimal dynamical system

Let (S^n, β) be a minimal dynamical system

The associated C*-algebra $C(S^n) \rtimes_{\beta} \mathbb{Z}$ has no nontrivial projections [Connes, 1981].

Let (S^n, β) be a minimal dynamical system

The associated C*-algebra $C(S^n) \rtimes_{\beta} \mathbb{Z}$ has no nontrivial projections [Connes, 1981].

There is a 1-1 correspondence:

 $\{\beta$ -invariant measures on $S^n\} \longleftrightarrow T(C(X) \rtimes_{\beta} \mathbb{Z})$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let (S^n, β) be a minimal dynamical system

The associated C*-algebra $C(S^n) \rtimes_{\beta} \mathbb{Z}$ has no nontrivial projections [Connes, 1981].

There is a 1-1 correspondence:

 $\{\beta$ -invariant measures on $S^n\} \longleftrightarrow T(C(X) \rtimes_{\beta} \mathbb{Z})$

 \implies Windsor's nonuniquely ergodic examples are not covered by current classification theorems.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let (S^n, β) be a minimal dynamical system

The associated C*-algebra $C(S^n) \rtimes_{\beta} \mathbb{Z}$ has no nontrivial projections [Connes, 1981].

There is a 1-1 correspondence:

 $\{\beta$ -invariant measures on $S^n\} \longleftrightarrow T(C(X) \rtimes_{\beta} \mathbb{Z})$

 \implies Windsor's nonuniquely ergodic examples are not covered by current classification theorems.

Problem: Having no nontrivial projections and many tracial states means there is less information in the Elliott invariant. This makes classification more difficult! Theorem (S, 2014) Suppose $\beta_1 : S^n \to S^n, \beta_2 : S^m \to S^m$ are fast approximations by periodic homeomorphisms. Then

 $C(S^n) \rtimes_{\beta_1} \mathbb{Z} \cong C(S^m) \rtimes_{\beta_2} \mathbb{Z} \iff T(C(S^n) \rtimes_{\beta_1} \mathbb{Z}) \cong T(C(S^m) \rtimes_{\beta_2} \mathbb{Z}).$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (S, 2014) Suppose $\beta_1 : S^n \to S^n, \beta_2 : S^m \to S^m$ are fast approximations by periodic homeomorphisms. Then

 $C(S^n) \rtimes_{\beta_1} \mathbb{Z} \cong C(S^m) \rtimes_{\beta_2} \mathbb{Z} \iff T(C(S^n) \rtimes_{\beta_1} \mathbb{Z}) \cong T(C(S^m) \rtimes_{\beta_2} \mathbb{Z}).$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The classification of minimal Cantor systems used a "large" subalgebra of $C(X) \rtimes_{\alpha} \mathbb{Z}$, given by breaking the orbit of α at some point $x \in X$.

・ロト・日本・モート モー うへぐ

The classification of minimal Cantor systems used a "large" subalgebra of $C(X) \rtimes_{\alpha} \mathbb{Z}$, given by breaking the orbit of α at some point $x \in X$.

Let (X, α) be a minimal dynamical system where X is compact and metrizable. Set

 $A:=C(X)\rtimes_{\alpha}\mathbb{Z}$

The classification of minimal Cantor systems used a "large" subalgebra of $C(X) \rtimes_{\alpha} \mathbb{Z}$, given by breaking the orbit of α at some point $x \in X$.

Let (X, α) be a minimal dynamical system where X is compact and metrizable. Set

$$A:=C(X)
times_{lpha}\mathbb{Z}$$

and let *u* denote the unitary implementing α . Then for any nonempty closed subset $Y \subset X$, define

$$A_Y = C^*(C(X), uC_0(X \setminus Y)).$$

The classification of minimal Cantor systems used a "large" subalgebra of $C(X) \rtimes_{\alpha} \mathbb{Z}$, given by breaking the orbit of α at some point $x \in X$.

Let (X, α) be a minimal dynamical system where X is compact and metrizable. Set

$$A := C(X) \rtimes_{\alpha} \mathbb{Z}$$

and let *u* denote the unitary implementing α . Then for any nonempty closed subset $Y \subset X$, define

$$A_Y = C^*(C(X), uC_0(X \setminus Y)).$$

When $x \in X$, then $A_{\{x\}}$ retains a lot of information from A, but has an easier structure to deal with.

In the case that (X, α) is a minimal Cantor system, $A_{\{x\}}$ is AF [Putnam, 1989].

In the case that (X, α) is a minimal Cantor system, $A_{\{x\}}$ is AF [Putnam, 1989].

More generally, if (X, α) is an arbitrary minimal dynamical system then $A_{\{x\}}$ is an approximately recursive subhomogeneous (RSH) algebra [Phillips, 2007].

In the case that (X, α) is a minimal Cantor system, $A_{\{x\}}$ is AF [Putnam, 1989].

More generally, if (X, α) is an arbitrary minimal dynamical system then $A_{\{x\}}$ is an approximately recursive subhomogeneous (RSH) algebra [Phillips, 2007].

[Lin–Phillips, 2010] Under some restrictions, if $A_{\{x\}}$ is tracially approximately finite (TAF), then so is A.

In the case that (X, α) is a minimal Cantor system, $A_{\{x\}}$ is AF [Putnam, 1989].

More generally, if (X, α) is an arbitrary minimal dynamical system then $A_{\{x\}}$ is an approximately recursive subhomogeneous (RSH) algebra [Phillips, 2007].

[Lin–Phillips, 2010] Under some restrictions, if $A_{\{x\}}$ is tracially approximately finite (TAF), then so is A.

 \implies classification for many such $\mathrm{C}^*\mbox{-algebras}.$

In the case that (X, α) is a minimal Cantor system, $A_{\{x\}}$ is AF [Putnam, 1989].

More generally, if (X, α) is an arbitrary minimal dynamical system then $A_{\{x\}}$ is an approximately recursive subhomogeneous (RSH) algebra [Phillips, 2007].

[Lin–Phillips, 2010] Under some restrictions, if $A_{\{x\}}$ is tracially approximately finite (TAF), then so is A.

 \implies classification for many such $\mathrm{C}^*\text{-algebras}.$

[S.–Winter, 2010] If $A_{\{x\}} \otimes Q$ is TAS, then so is $A \otimes Q$.

In the case that (X, α) is a minimal Cantor system, $A_{\{x\}}$ is AF [Putnam, 1989].

More generally, if (X, α) is an arbitrary minimal dynamical system then $A_{\{x\}}$ is an approximately recursive subhomogeneous (RSH) algebra [Phillips, 2007].

[Lin–Phillips, 2010] Under some restrictions, if $A_{\{x\}}$ is tracially approximately finite (TAF), then so is A.

 \implies classification for many such $\mathrm{C}^*\mbox{-algebras}.$

[S.–Winter, 2010] If $A_{\{x\}} \otimes Q$ is TAS, then so is $A \otimes Q$.

⇒ classification, up to \mathcal{Z} -stability when the C*-algebras have projections separating tracial states via results of Winter and Lin. ⇒ classification when dim(X) < ∞ and the C*-algebras have projections separating tracial states. [Toms–Winter, 2009].

Classification by embedding

Theorem (Winter, 2013)

Let A and B be separable, simple, unital C^{*}-algebras. Suppose that $\dim_{nuc} A < \infty$ and that A has only finitely many extremal tracial states. Let B be TAI and suppose there is a unital embedding

$$\iota: A \to B$$

such that

$$T(\iota):T(B)\stackrel{\cong}{ o} T(A)$$

and such that

$$\tau_* = \tau'_* \in S(K0(B))$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

for $\tau, \tau' \in T(B)$. Then $A \otimes Q$ is TAI.

・ロト・日本・モト・モート ヨー うへぐ

• $A := C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ is simple,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

•
$$A := C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$$
 is simple,

•
$$SK_0(A) = \{pt\},\$$

- $A := C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ is simple,
- $SK_0(A) = \{pt\},\$
- ι: C(Sⁿ) ⋊_β ℤ → A induces a homeomorphism of tracial state spaces.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

• $A := C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ is simple,

•
$$SK_0(A) = \{pt\},\$$

ι : C(Sⁿ) ⋊_β ℤ → A induces a homeomorphism of tracial state spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is easier to show that A is classifiable!

Even if α is minimal, $\alpha\times\beta$ need not be. However,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Even if α is minimal, $\alpha \times \beta$ need not be. However,

Proposition

Let $\beta: S^n \to S^n$ be a minimal homeomorphism. Then there is a uniquely ergodic minimal homeomorphism $\alpha: X \to X$ such that the homeomorphism $\alpha \times \beta: X \times S^n \to X \times S^n$ is minimal.

・ロト・日本・モート・モー うらくで

It is easy to show that since S^n is connected, β is totally minimal, i.e. β^m is minimal for every $m \in \mathbb{N}$.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

It is easy to show that since S^n is connected, β is totally minimal, i.e. β^m is minimal for every $m \in \mathbb{N}$.

Let $(\varprojlim \mathbb{Z}/m_j, \alpha)$ be an odometer system (so $\alpha(x) = x + 1$). We can show that any $(x_0, y_0) \in X \times S^n$ has dense orbit in $X \times S^n$. Let $(x, y) \in X \times S^n$. Take *j* sufficiently large to find elements $x'_0, x' \in \mathbb{Z}/m_j$ lying very close to x_0 and *x*, respectively.

It is easy to show that since S^n is connected, β is totally minimal, i.e. β^m is minimal for every $m \in \mathbb{N}$.

Let $(\varprojlim \mathbb{Z}/m_j, \alpha)$ be an odometer system (so $\alpha(x) = x + 1$). We can show that any $(x_0, y_0) \in X \times S^n$ has dense orbit in $X \times S^n$. Let $(x, y) \in X \times S^n$. Take *j* sufficiently large to find elements $x'_0, x' \in \mathbb{Z}/m_j$ lying very close to x_0 and *x*, respectively.

Since \mathbb{Z}/m_j is finite, there is a $k \in \mathbb{Z}$ such that $\alpha^k(x_0') = x'$. Since β^{m_j} is minimal, there is $l \in \mathbb{N}$ such that $\beta^{lm_j}(\beta^k(y_0))$ is very close to y.

It is easy to show that since S^n is connected, β is totally minimal, i.e. β^m is minimal for every $m \in \mathbb{N}$.

Let $(\varprojlim \mathbb{Z}/m_j, \alpha)$ be an odometer system (so $\alpha(x) = x + 1$). We can show that any $(x_0, y_0) \in X \times S^n$ has dense orbit in $X \times S^n$. Let $(x, y) \in X \times S^n$. Take *j* sufficiently large to find elements $x'_0, x' \in \mathbb{Z}/m_j$ lying very close to x_0 and *x*, respectively.

Since \mathbb{Z}/m_j is finite, there is a $k \in \mathbb{Z}$ such that $\alpha^k(x_0') = x'$. Since β^{m_j} is minimal, there is $l \in \mathbb{N}$ such that $\beta^{lm_j}(\beta^k(y_0))$ is very close to y.

Then we have $(\alpha \times \beta)^{lm_j+k}(x_0, y_0)$ close to (x, y).

Let $\alpha \times \beta : X \times S^n \to X \times S^n$ be a minimal homeomorphism where (X, α) is an odometer system. Then every tracial state $\tau \in T(A)$ comes from the product of the unique tracial state τ_1 on $\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}$ and a tracial state $\tau_2 \in T(\mathcal{C}(S^n) \rtimes_{\beta} \mathbb{Z})$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let $\alpha \times \beta : X \times S^n \to X \times S^n$ be a minimal homeomorphism where (X, α) is an odometer system. Then every tracial state $\tau \in T(A)$ comes from the product of the unique tracial state τ_1 on $\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}$ and a tracial state $\tau_2 \in T(\mathcal{C}(S^n) \rtimes_{\beta} \mathbb{Z})$.

Proof.

Consider the measure-preserving dynamical systems $(X, \mu \circ \pi_X)$, $(S^n, \mu \circ \pi_{S^n})$ and $(X \times S^n, \mu)$, where π_X, π_{S^n} are projections from $X \times S^n$ onto X and S^n . Since β is completely minimal and (X, α) is an odometer, it follows that (X, μ_0) and (S^n, μ_1) are disjoint as measurable dynamical systems, that is, $\mu = \mu_0 \times \mu_2$ [Downarowicz].

Let $\alpha \times \beta : X \times S^n \to X \times S^n$ be a minimal homeomorphism where (X, α) is an odometer system. Then every tracial state $\tau \in T(\mathcal{C}(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z})$ induces the same state on $K_0(\mathcal{C}(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}).$

Let $\alpha \times \beta : X \times S^n \to X \times S^n$ be a minimal homeomorphism where (X, α) is an odometer system. Then every tracial state $\tau \in T(\mathcal{C}(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z})$ induces the same state on $K_0(\mathcal{C}(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}).$

Proof.

Follows from the fact every $\tau \in T(A)$ is of the form $\tau_X \otimes \tau_{S^n}$ where τ_X is the unique α -invariant tracial state on $\mathcal{C}(X)$ and τ_{S^n} , that $\tau, \tau' \in T(S^n)$, we have $\tau_* = \tau'_*$ has range \mathbb{Z} [Phillips, 2007].

 $H^1(X \times S^n, \mathbb{Z}) = 0 \implies$ range of a state τ_* induced by any tracial state $\tau \in T(A)$ is determined by range of τ_* on $K_0(\mathcal{C}(X \times S^n)).$

Instead of breaking the orbit at a point in $X \times S^n$, we take $x \in X$ and break the orbit at a fibre $\{x\} \times S^n$:

$$A_{\{x\}\times S^n} := C^*(C(X\times S^n), uC_0((X\setminus \{x\})\times S^n)).$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Instead of breaking the orbit at a point in $X \times S^n$, we take $x \in X$ and break the orbit at a fibre $\{x\} \times S^n$:

$$A_{\{x\}\times S^n} := C^*(C(X\times S^n), uC_0((X\setminus \{x\})\times S^n)).$$

It is easy to show that $A_{\{x\}\times S^n}$ is AH with no dimension growth, hence TAI. We show that this in turn implies A is TAI, hence classifiable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Instead of breaking the orbit at a point in $X \times S^n$, we take $x \in X$ and break the orbit at a fibre $\{x\} \times S^n$:

$$A_{\{x\}\times S^n} := C^*(C(X\times S^n), uC_0((X\setminus \{x\})\times S^n)).$$

It is easy to show that $A_{\{x\}\times S^n}$ is AH with no dimension growth, hence TAI. We show that this in turn implies A is TAI, hence classifiable.

Remarks: This is similar to what Lin and Matui did for minimal dynamical systems of $X \times \mathbb{T}$ and what Sun did for minimal dynamical systems on $X \times \mathbb{T}^2$.

・ロト ・ 日 ・ モー・ ト ・ 日 ・ うへぐ

To show that $A_{\{x\} \times S^n}$ TAI \implies A TAI, we require the following: 1. $A_{\{x\} \times S^n}$ is simple.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To show that $A_{\{x\}\times S^n}$ TAI \implies A TAI, we require the following:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. $A_{\{x\} \times S^n}$ is simple.
- A projection p ∈ A_{{x}×Sⁿ} that is tracially large and approximately commutes with u.

To show that $A_{\{x\}\times S^n}$ TAI \implies A TAI, we require the following:

- 1. $A_{\{x\} \times S^n}$ is simple.
- A projection p ∈ A_{{x}×Sⁿ} that is tracially large and approximately commutes with u.

Can show (1) in the same way as one shows $C^*(C(Y), vC_0(Y \setminus \{y\}))$ is simple for arbitrary minimal dynamical system (Y, γ) [Lin–Phillips, 2010], or by considering the C^* -algebra associated to a subgroupoid

Definition

Let Y be infinite, compact, metrisable and $\beta : Y \to Y$ a homeomorphism. Say that β is a fast approximation by periodic homeomorphisms if $\beta : Y \to Y$ that can be written as the limit of a sequence $(T_i)_{i \in \mathbb{N}}$ of homeomorphisms such that $T_i : Y \to Y$ has period m_i , each m_i divides m_{i+1} , and

$$\sup_{\substack{t\in Y\ j=1,\ldots,m_i}}|eta^j(t)-\mathcal{T}^j_i(t)|
ightarrow 0$$
 as $i
ightarrow\infty.$

< ロ > < 同 > < E > < E > E < の < 0</p>

Finding the projection p

Lemma

There is an odometer system (X, α) such that the following holds: For any $y \in X$, any $\epsilon > 0$, any $N_0 \in \mathbb{R}_+$, and any pair of finite sets $\mathcal{F}_X \subset \mathcal{C}(X)$, $\mathcal{F}_{S^n} \subset \mathcal{C}(S^n)$ there are $M > N_0 \in \mathbb{N}$ and $y \in U \subset X$ a clopen subset and a partial isometry $w \in A_{\{v\}}$ such that

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

1. $\alpha^{-M}(U), \ldots, \alpha^{-1}(U), U, \alpha(U), \ldots, \alpha^{M}(U)$ are pairwise disjoint

2.
$$w^*w = 1_{U \times S^n}$$
 and $ww^* = 1_{\alpha^M(U) \times S^n}$,

3.
$$\|wa - aw\| < \epsilon$$
 for every
 $a \in \{f \otimes 1_{S^n} \mid f \in \mathcal{F}_X\} \cup \{1_X \otimes f \mid f \in \mathcal{F}_{S^n}\}.$

Theorem

Let \mathcal{A} be the simple unital C*-algebras associated to minimal diffeomorphisms $\beta: S^n \to S^n$ as constructed by Fathi and Herman or Windsor. Then for any $A, B \in \mathcal{A}$,

$$A \cong B$$

if and only if

 $T(A) \cong T(B).$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

By the above, there is a minimal Cantor system (X, α) such that $C(S^n) \rtimes_{\beta} \mathbb{Z}$ embeds in a trace-preserving way into $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$. Moreover, every tracial state on $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ induces the same state on K_0 .

< ロ > < 同 > < E > < E > E < の < 0</p>

By the above, there is a minimal Cantor system (X, α) such that $C(S^n) \rtimes_{\beta} \mathbb{Z}$ embeds in a trace-preserving way into $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$. Moreover, every tracial state on $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ induces the same state on K_0 .

We have that $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ is TAI, thus by Winter's theorem $(C(S^n) \rtimes_{\beta} \mathbb{Z}) \otimes \mathcal{Q}$ is TAI. Since these C*-algebras all satisfy the UCT, classification up to \mathcal{Z} -stability by Elliott invariants follows from a result of Lin (the class of simple unital nuclear UCT C*-algebras that are "rationally" TAI are classifiable by Elliott Invariants).

By the above, there is a minimal Cantor system (X, α) such that $C(S^n) \rtimes_{\beta} \mathbb{Z}$ embeds in a trace-preserving way into $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$. Moreover, every tracial state on $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ induces the same state on K_0 .

We have that $C(X \times S^n) \rtimes_{\alpha \times \beta} \mathbb{Z}$ is TAI, thus by Winter's theorem $(C(S^n) \rtimes_{\beta} \mathbb{Z}) \otimes \mathcal{Q}$ is TAI. Since these C*-algebras all satisfy the UCT, classification up to \mathcal{Z} -stability by Elliott invariants follows from a result of Lin (the class of simple unital nuclear UCT C*-algebras that are "rationally" TAI are classifiable by Elliott Invariants).

Since dim $(S^n) < \infty$, all C*-algebras are \mathcal{Z} -stable [Toms–Winter, 2009].

Finally, Phillips via Connes showed that every such C^* -algebra has isomorphic *K*-theory. Thus the Elliott invariant collapses to the tracial state space.

Remarks

Huaxin Lin was able to remove that β be a fast approximation by periodic homeomorphisms by showing that There is $v \in A_{\{x\} \times S^n} \cap C(X) \rtimes_{\alpha} \mathbb{Z}$ which twists 1_U to $1_{\alpha^m(U)}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Remarks

Huaxin Lin was able to remove that β be a fast approximation by periodic homeomorphisms by showing that There is $v \in A_{\{x\} \times S^n} \cap C(X) \rtimes_{\alpha} \mathbb{Z}$ which twists 1_U to $1_{\alpha^m(U)}$. and then shows that the maps $\psi_1, \psi_2 : C(S^n) \to (1_U A_{\{x\}} 1_U)$ given by

$$\psi_1(f) = v^* u^M \mathbf{1}_U f \mathbf{1}_U u^{-M} v$$

and

$$\psi_2(f) = \mathbb{1}_U f \mathbb{1}_U$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

are approximately unitarily equivalent.

Remarks

Huaxin Lin was able to remove that β be a fast approximation by periodic homeomorphisms by showing that There is $v \in A_{\{x\} \times S^n} \cap C(X) \rtimes_{\alpha} \mathbb{Z}$ which twists 1_U to $1_{\alpha^m(U)}$. and then shows that the maps $\psi_1, \psi_2 : C(S^n) \to (1_U A_{\{x\}} 1_U)$ given by

$$\psi_1(f) = v^* u^M \mathbf{1}_U f \mathbf{1}_U u^{-M} v$$

and

$$\psi_2(f) = \mathbb{1}_U f \mathbb{1}_U$$

< ロ > < 同 > < 三 > < 三 > 、 三 > 、 ○ < ○ </p>

are approximately unitarily equivalent.

This is used to produce the partial isometry w.