
Classification of C∗-algebras of minimal
diffeomorphisms on odd dimensional spheres

Karen R. Strung

Institute of Mathematics
Polish Academy of Sciences

(Warsaw)

West Coast Operator Algebra Seminar
Denver, November 2014



Introduction

Let X be an infinite compact Hausdorff space and α : X → X a
homeomorphism.
Then α induces an action of Z on the C∗-algebra C (X ):

n.f 7−→ f ◦ α−n.

What can we say about the crossed product C∗-algebra?

C(X) oα Z “ = ”C∗(C (X ), u),

where u is a unitary implementing the action, i.e,

ufu∗ = f ◦ α−1.



Basics

Let (X , α) be a topological dynamical system. Then

I C(X) oα Z is nuclear.

I Tracial states are in one-to-one correspondence with invariant
Borel probability measures.

I When X is metrisable, C(X) oα Z is separable.

I (X , α) is a minimal dynamical system (ie. there are no proper
closed α-invariant subsets of X ) if and only if C(X) oα Z is
simple.
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Classification of C∗-algebras

To every (simple separable unital nuclear) C∗-algebra A, one may
assign the Elliott invariant,

Ell(A) = (K0(A),K0(A)+, [1A]+,K1(A),

T (A), ρ : T (A)→ SK0(A)).

Given a class C of simple separable unital nuclear C∗-algebras, we
want to show that if A,B ∈ C then

Ell(A) ∼= Ell(B) ⇐⇒ A ∼= B.
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Higher dimensions

What if dimX > 0?

We can say some things:

Theorem
Let CD = {C (X ) oα Z | (X , α) is uniquely ergodic}. Then for
A,B ∈ CD we have A ∼= B ⇐⇒ Ell(A) ∼= Ell(B).

(In fact, we can do a bit better: We only need that the projections
separate traces in the C∗-algebra.)

Does ∗-isomorphism =⇒ something about dynamical systems?

Example [Fathi-Herman]: Let m 6= n ≥ 3, odd. Then there are
uniquely ergodic minimal dynamical systems (Sm, β1), (Sn, β2)
such that C (Sm) oβ1 Z ∼= C (Sn) oβ2 Z.
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Minimal diffeomorphisms of odd dimensional spheres

Let n = 2k + 1, k ≥ 1.

There are minimal diffeomorphisms β of Sn having any predefined
number of β-invariant measures [Windsor, 2003].

In particular there exist nonuniquely ergodic minimal dynamical
systems.



Fast approximation

Definition
Let Y be infinite, compact, metrisable and β : Y → Y a
homeomorphism. Say that β is a fast approximation by periodic
homeomorphisms if β : Y → Y that can be written as the limit of
a sequence (Ti )i∈N of homeomorphisms such that Ti : Y → Y has
period mi , each mi divides mi+1, and

sup
t∈Y

j=1,...,mi

|βj(t)− T j
i (t)| → 0 as i →∞.

Windsor’s diffeomorphisms above are all fast approximations by
periodic homeomorphisms.
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Let (Sn, β) be a minimal dynamical system

The associated C∗-algebra C (Sn) oβ Z has no nontrivial
projections [Connes, 1981].

There is a 1− 1 correspondence:

{β-invariant measures on Sn} ←→ T (C (X ) oβ Z)

=⇒ Windsor’s nonuniquely ergodic examples are not covered by
current classification theorems.

Problem: Having no nontrivial projections and many tracial states
means there is less information in the Elliott invariant. This makes
classification more difficult!
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A look back at previous classification techniques

The classification of minimal Cantor systems used a “large”
subalgebra of C (X ) oα Z, given by breaking the orbit of α at some
point x ∈ X .

Let (X , α) be a minimal dynamical system where X is compact
and metrizable. Set

A := C (X ) oα Z

and let u denote the unitary implementing α. Then for any
nonempty closed subset Y ⊂ X , define

AY = C ∗(C (X ), uC0(X \ Y )).

When x ∈ X , then A{x} retains a lot of information from A, but
has an easier structure to deal with.
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In the case that (X , α) is a minimal Cantor system, A{x} is AF
[Putnam, 1989].

More generally, if (X , α) is an arbitrary minimal dynamical system
then A{x} is an approximately recursive subhomogeneous (RSH)
algebra [Phillips, 2007].

[Lin–Phillips, 2010] Under some restrictions, if A{x} is tracially
approximately finite (TAF), then so is A.

=⇒ classification for many such C∗-algebras.

[S.–Winter, 2010] If A{x} ⊗Q is TAS, then so is A⊗Q.

=⇒ classification, up to Z-stability when the C∗-algebras have
projections separating tracial states via results of Winter and Lin.
=⇒ classification when dim(X ) <∞ and the C∗-algebras have

projections separating tracial states. [Toms–Winter, 2009].
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Classification by embedding

Theorem (Winter, 2013)

Let A and B be separable, simple, unital C∗-algebras. Suppose that
dimnuc A <∞ and that A has only finitely many extremal tracial
states. Let B be TAI and suppose there is a unital embedding

ι : A→ B

such that
T (ι) : T (B)

∼=→ T (A)

and such that
τ∗ = τ ′∗ ∈ S(K 0(B))

for τ, τ ′ ∈ T (B). Then A⊗Q is TAI.



Product with a Cantor system

There is a Cantor dynamical system (X , α) such that

I A := C (X × Sn) oα×β Z is simple,

I SK0(A) = {pt},
I ι : C (Sn) oβ Z ↪→A induces a homeomorphism of tracial state

spaces.

It is easier to show that A is classifiable!
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When is α× β minimal?

Even if α is minimal, α× β need not be. However,

Proposition

Let β : Sn → Sn be a minimal homeomorphism. Then there is a
uniquely ergodic minimal homeomorphism α : X → X such that
the homeomorphism α× β : X × Sn → X × Sn is minimal.
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Proof.
It is easy to show that since Sn is connected, β is totally minimal,
i.e. βm is minimal for every m ∈ N.

Let (lim←−Z/mj , α) be an odometer system (so α(x) = x + 1). We

can show that any (x0, y0) ∈ X × Sn has dense orbit in X × Sn.
Let (x , y) ∈ X × Sn. Take j sufficiently large to find elements
x ′0, x

′ ∈ Z/mj lying very close to x0 and x , respectively.

Since Z/mj is finite, there is a k ∈ Z such that αk(x ′0) = x ′. Since
βmj is minimal, there is l ∈ N such that βlmj (βk(y0)) is very close
to y .

Then we have (α× β)lmj+k(x0, y0) close to (x , y).
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Proposition

Let α× β : X × Sn → X × Sn be a minimal homeomorphism
where (X , α) is an odometer system. Then every tracial state
τ ∈ T (A) comes from the product of the unique tracial state τ1 on
C(X ) oα Z and a tracial state τ2 ∈ T (C(Sn) oβ Z).

Proof.
Consider the measure-preserving dynamical systems (X , µ ◦ πX ),
(Sn, µ ◦ πSn) and (X × Sn, µ), where πX , πSn are projections from
X × Sn onto X and Sn. Since β is completely minimal and (X , α)
is an odometer, it follows that (X , µ0) and (Sn, µ1) are disjoint as
measurable dynamical systems, that is, µ = µ0 × µ2
[Downarowicz].
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[Downarowicz].



Proposition

Let α× β : X × Sn → X × Sn be a minimal homeomorphism
where (X , α) is an odometer system. Then every tracial state
τ ∈ T (C(X × Sn) oα×β Z) induces the same state on
K0(C(X × Sn) oα×β Z).

Proof.
Follows from the fact every τ ∈ T (A) is of the form τX ⊗ τSn

where τX is the unique α-invariant tracial state on C(X ) and τSn ,
that τ, τ ′ ∈ T (Sn), we have τ∗ = τ ′∗ has range Z [Phillips, 2007].

H1(X × Sn,Z) = 0 =⇒ range of a state τ∗ induced by any tracial
state τ ∈ T (A) is determined by range of τ∗ on
K0(C(X × Sn)).
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Breaking the orbit at a fibre

Instead of breaking the orbit at a point in X × Sn, we take x ∈ X
and break the orbit at a fibre {x} × Sn:

A{x}×Sn := C ∗(C (X × Sn), uC0((X \ {x})× Sn)).

It is easy to show that A{x}×Sn is AH with no dimension growth,
hence TAI. We show that this in turn implies A is TAI, hence
classifiable.

Remarks: This is similar to what Lin and Matui did for minimal
dynamical systems of X × T and what Sun did for minimal
dynamical systems on X × T2.
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Ingredients

To show that A{x}×Sn TAI =⇒ A TAI, we require the following:

1. A{x}×Sn is simple.

2. A projection p ∈ A{x}×Sn that is tracially large and
approximately commutes with u.

Can show (1) in the same way as one shows
C∗(C (Y ), vC0(Y \ {y})) is simple for arbitrary minimal dynamical
system (Y , γ) [Lin–Phillips, 2010], or by considering the
C∗-algebra associated to a subgroupoid
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Definition
Let Y be infinite, compact, metrisable and β : Y → Y a
homeomorphism. Say that β is a fast approximation by periodic
homeomorphisms if β : Y → Y that can be written as the limit of
a sequence (Ti )i∈N of homeomorphisms such that Ti : Y → Y has
period mi , each mi divides mi+1, and

sup
t∈Y

j=1,...,mi

|βj(t)− T j
i (t)| → 0 as i →∞.



Finding the projection p

Lemma
There is an odometer system (X , α) such that the following holds:
For any y ∈ X , any ε > 0, any N0 ∈ R+, and any pair of finite sets
FX ⊂ C(X ), FSn ⊂ C(Sn) there are M > N0 ∈ N and y ∈ U ⊂ X
a clopen subset and a partial isometry w ∈ A{y} such that

1. α−M(U), . . . , α−1(U),U, α(U), . . . , αM(U) are pairwise
disjoint

2. w∗w = 1U×Sn and ww∗ = 1αM(U)×Sn ,

3. ‖wa− aw‖ < ε for every
a ∈ {f ⊗ 1Sn | f ∈ FX} ∪ {1X ⊗ f | f ∈ FSn}.



Classification for C (Sn) oβ Z.

Theorem
Let A be the simple unital C∗-algebras associated to minimal
diffeomorphisms β : Sn → Sn as constructed by Fathi and Herman
or Windsor. Then for any A,B ∈ A,

A ∼= B

if and only if
T (A) ∼= T (B).



Proof

By the above, there is a minimal Cantor system (X , α) such that
C (Sn) oβ Z embeds in a trace-preserving way into
C (X × Sn) oα×β Z. Moreover, every tracial state on
C (X × Sn) oα×β Z induces the same state on K0.

We have that C (X × Sn) oα×β Z is TAI, thus by Winter’s theorem
(C (Sn) oβ Z)⊗Q is TAI. Since these C∗-algebras all satisfy the
UCT, classification up to Z-stability by Elliott invariants follows
from a result of Lin (the class of simple unital nuclear UCT
C∗-algebras that are “rationally” TAI are classifiable by Elliott
Invariants).

Since dim(Sn) <∞, all C∗-algebras are Z-stable [Toms–Winter,
2009].
Finally, Phillips via Connes showed that every such C∗-algebra has
isomorphic K -theory. Thus the Elliott invariant collapses to the
tracial state space.
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Remarks

Huaxin Lin was able to remove that β be a fast approximation by
periodic homeomorphisms by showing that
There is v ∈ A{x}×Sn ∩ C (X ) oα Z which twists 1U to 1αm(U).

and then shows that the maps ψ1, ψ2 : C (Sn)→ (1UA{x}1U) given
by

ψ1(f ) = v∗uM1U f 1Uu−Mv

and
ψ2(f ) = 1U f 1U

are approximately unitarily equivalent.

This is used to produce the partial isometry w .
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